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I. Background

Combinatorial game theory is an area of mathematics that is full of
opportunities to research for any level of education. The nature of the field allows
one to add a variation to a game which may make it more or less interesting to study.
Typically the winner of a game is the player to make the last move. In the misére
version of games, the player that moves last loses. Such a simple variation may seem
like it would not affect the strategy of play very much; however, for most games that
is not the case.

Nim is a game that starts with heaps of stones, and players take turns
removing any number of stones they would like from one heap. In normal play the
winner is the player to remove the last stone. The strategy for this game is to leave
the nim-sum of the heaps as zero after your turn. (The nim-sum is binary addition
of the number of stones in each heap without carrying.) This will guarantee that for
any move your opponent makes, you will also have a move. The interesting thing
about nim is that it has been proven that when using normal play, any impartial
combinatorial game relates to nim. [2]

The strategy for misére play in nim is the same as normal play, except when
a player’s move is going to leave only heaps of zero and one stone. The reasoning
behind this slight change of strategy is simple. In both normal and misére nim, all
single heaps of two stones or greater are a win for the next player to move (an N-
position). For normal nim a heap of one stone is a N-position and a heap of zero is a

P-position (a win for the player that moved previously); these two outcomes switch in



misere nim.

This change in the outcomes affects the operations on Gundy values as well.
The Grundy value in normal play is a value given to impartial games based on the
options of the player. In misére play, relatively few games can be given a Grundy
value because the game’s value is G=*m where m is the minimum excluded value
(mex) of the options the player has from game G with the added stipulation that at
least one of G’s options is a *0 or a *1. When dealing with subtraction games, this
does not cause any complications [3, p 442], but this causes chaos in many other
games. Another change in the Grundy values is that the nim-sum of two values is
also only defined for when *0 or *1 is added to another nimber. Otherwise, addition
is undefined. For example *2 + *2 in normal play is equal to *0, but in misere *2 +
*2 cannot be simplified further. These new versions of the addition and mex rules
mean that depending solely on the Grundy values to find the outcomes of games most
likely won’t be sufficient. In other words, not all impartial combinatorial games
relate to nim when following misére play. [5]

Recently, Thane Plambeck made a huge leap in the progress of misére games
by looking at games in terms of equivalence classes based on possible game positions
instead of all game positions. The traditional definition of games being equivalent
is that game G equals game H when G+X = H+X for all games X. According to
Plambeck’s approach, if one is trying to analyze a game in a specific context, then
one does not need a definition of equivalence to be this strong. Instead, a set A is
defined where A is a collection of games closed under addition. Additionally for

any game in A, any option of a game G in A must also be in A. Now a new kind of



equivalence =, can be defined as follows: if G and H are games in the set A, then
G =, H if and only if G+X =, H+X for all games X in A. [5]

This new definition of equality simplifies the process of determining the value
of a game G because it reduces the number of games that have to be added to it in
order to compare outcomes. Using an example from Aaron Siegel’s paper [5], let A
be the set of all sums of * and *2. There is a total of six equivalence classes formed
by this A (0, *, *2, *2+%* *24+%2_ *24+%2+*) [t can be shown that any other sum is
equivalent to one of those classes based on the new definition of equivalence. This
set of equivalence classes is referred to as the misére quotient (Q(A)). It also can
be shown that any Q(A) is a commutative monoid. Every game must include O (the
identity element), and the operation is clearly commutative (*2+* = *+*2). The set
A is closed by definition, and it is also clearly associative. Since A is closed under
addition and includes any option of G in A, we can also say that for this example
Q(A)=Q(*2).

The collection of equivalence classes is commonly referred to through an
isomorphism. Begin by defining the isomorphism ® by ®(0) = 1, ®(*) = a and O(*2)
=b. Normally * + *2 = *3, but *3 is not included in the set A. ®(* + *2) =ab. In
misére *2 + *2 is already in its simplified form, and ®(*2 + *2) = b2. Hence Q(A)
=1, a, b, ab, b2, ab?] where a?>=1 and b’=b. Note also that in this example, there are
two classes that are P-positions: a and b?. The convenience of this information is if
one was looking at a game that was determined by a finite number of *’s and *2’s, the
value of the game through the isomorphism is a"b™ where n is the number of *’s and

m is the number of *2’s. Then use the identities for a and b to quickly determine the



outcome of the game.

At this point a game can be classified as one of two types of games: wild
or tame. A game is tame if its misére quotient is isomorphic to a misére quotient
from the game of nim. The quotients for nim are denoted by T, where T, = Q(*2™
. Hence, 2™! stones is the maximum number of stones in a nim heap when playing
this game. Returning to our previous example with Q(*2), Q(*2) is tame and is
isomorphic to T,. T, equals<a, by, by, ..., b, |a2=1,b2=b;, bj2=b2=... =b, >
> where a and by? are P-positions. Thus to find ®(*m), write m in binary (...c,c;cq)
then ®@(*m) = a *b,¢'b,%... Note that when dealing with small scales b, is often
written as just b, b, is replaced by c, b; is replaced by d, etc. If a misére quotient is
not isomorphic to a misére quotient for nim, then it is classified as wild. Rg=<a, b, t
| a2=1, b*> =D, t> = b2, bt = b> with P-positions a and b? is a special example of a wild
game because it is the smallest wild misére quotient. The only tame quotients smaller
than Rg are Ty, Ty, and T». [5]

Thane Plambeck has focused much of his research at this point on octal games
[5]. He has been using a periodicity theorem for octal games that has been expanded
for misere play. Our goal is to apply the idea of misére quotients to games that are

not necessarily octal games, including possibly partizan games.

II. EndNim



The main game examined for this work is EndNim. As described by Lessons
in Play [1], a game of EndNim consists of a row of stacks of boxes. On a player’s
turn, he/she may remove any number of boxes from one of the two stacks on the ends
of the row, up to the entire stack. In misere play, the losing player is the player to
remove the last box.

Upon initial examination of the game, determining the values of rows was
relatively easy. For each arrangement of boxes in stacks up to three boxes per row,
the value of each game was simply determined by computing the mex of the options.
Let E equal the set of possible games in EndNim. Then define the isomorphism ®
such that ®(*0) =g 1, ®(*1) = a, and ®(*2) =g b. For simplicity of notation, let
[X,y,..z] represent a row of boxes with x boxes in the first stack, y boxes in the second
stack, ... and z boxes in the last stack. Recall that a player is limited to removing
boxes from either the first or the last stack. This simplifies the analysis of a game. It
also means that a row is equal to its mirror image (e.g. [X,y,z] = [z,y,X]). Since the
options of all the possible rows of up to three boxes always include a 1 or 0, their
values can be computed through the mex of the options; therefore this game is clearly

isomorphic to T».

Row ® Value
[0] 1

[1] a

[2] b

[1,1] 1

[3] ab

[2,1] ab
[1,1,1] |a

Table 1: The values of all rows containing up to three boxes.



When increasing the possibilities to a maximum of four boxes, the value of *4
or ®(*4) =g ¢ is introduced. This means that if EndNim with four boxes is tame, it is
isomorphic to T;. There are also two games that cannot be computed through the
mex due to the lack of *1 and *0 in the list of options. Those games are [2,2] and
[1,2,1]. Notice that in [2,2] both stacks can be accessed by the players. In fact, it can
be treated as [2] + [2], or b « b= b2, Unfortunately, this trick does not work for [1,2,1]
because players are not able to access the middle stack of two boxes until after one of
the stacks on the end have been removed. While continuing to examine EndNim
through a maximum of seven boxes per row, there are many more of these cases that
cannot be quickly determined though the mex. In order to determine the values of an
unknown game G (and if EndNim remains tame) we must observe the outcomes of G
added to the other possible games of EndNim. If they correspond to the outcomes of
a tame value H added to the other possible games, then G =g H. If no game H exists,
then G must be a wild component of EndNim.

In order to make these computations easier, first create the operation table for

T3 (see Table 2).

() |1 a b Db> ab ab> ¢ ac bc abc
1 1 b b2 ab ab? ¢ ac bc abc
a a 1 ab ab? b b2 ac ¢ abc bc
b b ab b2 b ab? ab bc abc ¢ ac
bz | b2 ab? b b2 ab ab? ¢ ac bc abc

ab |[ab b ab2 ab b2 b abc bc abc ¢

abz |ab2 b2 ab ab? b b2 ac ¢ abc bc

c c ac bc ¢ abc ac b? a b ab

ac |ac ¢ abc ac bc ¢ a b2 ab b

bc |bc abc ¢ bc abc abc b ab bz ab?

abc |abc bc ac abc c bc ab b ab? b2
Table 2: Operation Table for T;




Recall that in T, a2 = 1, b> = b, b2 = ¢2, and the P-outcomes are a and b?[5]. Notice
that 1 is the identity, but b? also acts like an identity for all values except 1 and a.

Replace the sums in the table with their outcomes to obtain the desired information.

(*) |1 a b b> ab ab’> ¢ ac bc abc
1 N P NP N N NN N N
a P NNNNP NN N N
b N NP NN N NNN N
b [P NN P N N N N N N
ab I[N NNNP N NN N N
ab>|N P NN N P N N N N
C N NNNNN P N N N
ac I[N NN NN N NP N N
bc IN NNNN N NN P N
abc/N N NN N N NN N P
Table 3: Outcome Operation Table for T;

Now we determine the outcomes of [1,2,1] when added to the other possible
games in T3 (Table 4). Observe that the outcomes for [1,2,1] are the same as b2, so
[1,2,1] =g b?> where E is the set of all games that occur in EndNim (up to seven boxes
per row).

(%) |1 a b b> ab ab®> ¢ ac bc abec

®(1,21) [P N NP N N N N N N
Table 4. The outcomes when [1,2,1] is added to all possible games in T3.

While evaluating individual positions in EndNim, there were many tricks
discovered that made the process of evaluating positions occur more quickly and
easily. A few are listed and proven below as part of an attempt to prove EndNim is

always tame.



III. Is EndNim Tame?

Lemma 1: At most one of b and ab? results in a P-outcome when added to game G.
Proof: Suppose that G * b> was a P-position. G ¢ b? is also an option of G * ab?,
hence G * ab? has a P-option which makes G * ab? an N-position.

Now suppose that G « ab? is a P-position. That means all options of G ¢ ab? are N

positions, which includes G ¢ b2. [

Lemma 2: At most one of a, by, ab;, b,, ab,, b;b,, ab;b,... results in a P-outcome
when added to game G.

Proof: All of those values can be represented by a single stack of stones. Let H
represent the first (smallest) stack such that G + H is a P-outcome. For eachJ>H, G

+ H is an option of G + J. Thus G + J has a P-option and must be an N-position. []

Theorem 1: When determining the outcomes of game G added to the previously
determined games (a, b, b?, etc) at most two of the outcomes are P and the rest are N.
Proof: Lemma 1 and Lemma 2 are an exhaustive list of the options that can be added
to G, so at most one from Lemma 1 and at most one from Lemma 2 implies that at

most two of the outcomes will be P. []

Theorem 2 is not a necessary element in the attempted proof of EndNim
being tame. Instead it was an interesting result that merits a slight deviation from the

ultimate goal.



Theorem 2: A game of [1,n,1], where n > 1, is equivalent to b2.

Proof: When faced with the game [1,n,1], the first player (let's call her Alice) only
has one option: remove a stack with one box. The second player (let's call him Bob)
can respond and win by removing the entire stack of n boxes, which forces Alice to
take the last box. Thus [1,n,1]+ ® (1) = [1,n,1] is P.

Now examine the game of [1,n,1] + ®-!(b?). Since any b? game has the same
outcome when added to another game, we can use [2,2] to represent b2. Hence when
faced with [1,n,1] + [2,2] Alice has three options for removing boxes.

a. [n,1]+[2,2]

Bob could win by removing n-1 boxes from the first stack in the first row. This
leaves a+ b2 =1 * b?> = b2, which is a P-position.

b. [1,n,1] + [2]

We have already determined that [1,n,1] is a P-position, so Bob would respond by
removing the single stack of two boxes.

c.[1,n,1]+[1,2]

Bob can win by removing one box from the second stack in the second row. This
leaves [1,n,1]+ [1,1]=¢ [1,n,1] + ®'(a%) = [1,n,1] + ®I(1) =¢ [1,n,1].

Since all of Alice’s opening options result in Bob winning the game, [1,n,1] +
@1(b?) is also a P-position. By Lemmas 1 and 2, the remainding games in T; added
to [1,n,1] must result in an N-outcome. Therefore the outcomes of [1,n,1] match the

outcomes of b? and ®([1,n,1]) =¢ b2 [



Notice that Lemma 1 and Lemma 2 eliminate a lot of possible combinations
of outcomes from the collection of EndNim games, which leads to the question: Is it
possible to eliminate the remaining extraneous combinations of outcomes and declare
EndNim tame for any finite number of boxes? In order for this to happen, we need

the following lemma and the proof of the following conjecture.

Lemma 3: For any game G, there exists at least one game H such that G + H is a P-
position.

Proof: For any game G, G ¢ G is a P-position with the exception of G=a or G =

1. In order to show this, simply refer to the method of winning for misére nim. The
second player simply matches the first player’s moves until there are only stacks of
zero and one boxes remaining. For the cases of G =a or G = 1, refer to Table 3.7
Notice that Lemma 3 does not help define what G is equivalent to, it only guarantees

that there is no game that always results in a N-outcome when added to another game.

Conjecture: One of 1 * G=G and a * G is a P position if and only if one of b? * G
and ab? « G is a P-position.

The proof of this proposition would be sufficient to prove that EndNim is
tame. The proof in combination with previous theorems would also eliminate the
need for Theorem 3. Unfortunately such a proof has not been completed because
here another difficulty when using misere play instead of normal play arises. In
normal play, it is usually sufficient to know the outcomes of two games in order to

determine the outcome of their sum (see Table 5). In misére play, there are no such



guarantees. A quick way to verify this is to refer to Table 3.

a. +|P N b. +|P N
PP N P2 2
NIN ? N|? ?

Table 5: When adding games with known outcomes in normal play (a.), some of the
resulting outcomes are known, but in misere play (b.), none of these combinations are
certain.

Theorem 3: If G » ab;2 or G * b;2 is P, then G * by, ab;, b,, ab,, b;b,, ab;b,... are N-
positions.

Proof: Recall that ®(*m) = a%b;°'b,°? where ...c,c ¢ is m in binary. Then for tame
game a®b;°'b,*? can be represented by a single stack of m boxes. Also note that when
dealing with a game that consists of only two stacks of boxes, the players are able to
move with both stacks. Therefore the value of the game is the sum of the values of
the two stacks.

Assume that G * ab;? is P. Observe that ab;? can be an option of b,, ab,, bib,,
abib,... (*4, *5, *6, *7...) by writing those games as the sum of two stacks. Let H
be a game from b,, ab,, bib,, ab;b,... Since none of these have a squared term (b,> =
b;2), we know that H can be a single stack. An equivalent game J can be created that
consists of exactly two stacks: stack A and stack B. Let stack A equal abl and stack
B equal game H * a. If H contains a b1 term, remove it from stack B, otherwise add it
to stack B. This guarantees that stack B has at least four boxes and games J and H are
equivalent. The way J was designed, ab,*b; = ab,? is an option of J. Since G ¢ ab,? is
P and an option of G * J, then G * J is N. Note that ®([3, 2] + [2]) =g ab;? * b; = ab,

can be turned into ab;? by removing a stack of two boxes and ®([2, 2] + [2]) =g b;2 *



b; = b; can be turned into ab,? by removing a single box. Hence G * b; and G * ab, are
also N-positions

Now assume that G * b;? is P. A similar argument follows except begin with
stack A equal to b; and stack B equal to H. In the special cases remove the stack of

three boxes from [3, 2] + [2] and remove a stack of two boxes from [2, 2] + [2]. [

This leaves four special cases as listed below in Table 6. These cases are the
only remaining possibilities for wild games to occur in EndNim. If it can be shown

that these positions cannot occur in EndNim, then EndNim is tame for any number of

boxes.
b b1 ab ab1 b ab b1 b ab1 b
1 a4 2 1 2 2 2 2 2
G; |P N N N N N N N N N
G, I[N P N N N N N N N N
Gs [N NN P N N N N N N
Gs, [N N N N N P N N N N ..

Table 6: The remaining outcome combinations that may or may not occur in EndNim.

IV. Other Games

The misére variations of other games were also investigated including both
the partizan and impartial versions of maze and maize, and toppling dominoes.
Toppling dominoes is a game that is set up with a row of dominoes that are
traditionally colored black or white to represent which player may use them, as well
as gray to represent both players being able to use them. On a players turn, he/she
selects a domino and knocks it to the left or right which also knocks over any of the

other dominoes to the left or right. When playing with more than one game, the



dominoes from one game do not affect the dominoes in the other games [1]. For
impartial toppling dominoes (all dominoes are grey), the game is identical to nim.
The player can choose to remove a specific number of dominoes from a row just
like he/she could choose to remove a specific number of stones from a nim heap.
Therefore impartial toppling dominoes is tame. Similarly, the partizan version of
toppling dominoes would be identical to partizan nim where the stones are referred to
as stacks with a specific order instead of generic heaps.

Maze is a game that is played on an angled grid. The edges of the grid are
walls, and other walls may be added within the grid. The game is played with a
marker somewhere on the grid. One player can only move the marker down towards
the left, and the other can only move it down towards the right (unless an impartial
version is played, then both players may move in either direction). The marker can
be moved any number of spaces in one turn, as long as they are in the same direction.
The game ends when the marker cannot move because it is blocked by a wall. Maize
is a variation that restricts movement to one space per turn. When ma(i)ze games
are restricted to plain rectangular boards, simple patterns arise in the game values for
both the partizan and impartial versions; however the more interesting ma(i)ze games
are on non-rectangular boards and/or boards with walls. These were more difficult to

investigate



V. Conclusion

The misére version of several non-octal games has been investigated, with
this focus on the game of EndNim. Through an exhaustive list, the game of EndNim
has been proven tame for all games containing a maximum of seven boxes. Further
examination of EndNim eliminated all but four possible games (based on outcomes
when summed with other games) that could prevent EndNim from being entirely
tame. More research is necessary to determine whether or not those games exist in
EndNim. Ifthey do exist, then it would also be worth determining exactly what the
equivalence class(es) of the corresponding games look like.

The expansion of the idea of the misere quotient for partizan games should
also be further investigated. A partizan misére nim would have to be clearly defined
and studied to determine if the terms tame and wild could still apply to partizan
games. It is also important to note that just as the mex rules change when dealing
with impartial misére games, the simplification rules change when dealing with

partizan misere games.
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Appendix: EndNim Values for
Games with up to Seven Boxes

Each game G is followed by ®(G).

0 boxes
[0]

1 box
(1]

2 boxes
[2]

[1,1]

3 boxes
(3]

(2,1]
[1,1,1]
4 boxes
[4]

(3,11
[2,2]
[2,1,1]
[1,2,1]
[1,1,1,1]
5 boxes
(5]

[4,1]
(3,2]
[3,1,1]
[1,3,1]
[2,2,1]
[2,1,2]
[2,1,1,1]
[1,2,1,1]
[1,1,1,1,1]
6 boxes
[6]

[5,1]
[4,2]
[4,1,1]
[1,4,1]
[3,3]
[3,2,1]
[3,1,2]
[1,3,2]
[3,1,1,1]
[1,3,1,1]

ac
ac
ab?

b2
ab?
b2
ab
ab?

bc
bc
ab
b2
b2

ab?

[2,2,2]
[2,2,1,1]
[2,1,2,1]
[2,1,1,2]
[1,2,2,1]

2,1,1,1,1]
[1,2,1,1,1]
[1,1,2,1,1]
[1,1,1,1,1,1]
7 boxes
(7]

(6,1]

[5,2]
[5,1,1]
[1,5,1]
[4,3]

[4,2,1]

[4,1,2]

[1,4,2]
[4,1,1,1]
[1,4,1,1]

[3,3,1]

[3,1,3]

[3,2,2]

[2,3,2]
[3,2,1,1]
[3,1,2,1]
[3,1,1,2]
[2,3,1,1]
[1,3,2,1]
[1,3,1,2]
[2,2,2,1]
[2,2,1,2]

2,2,1,1,1]
2,1,2,1,1]
2,1,1,2,1]
2,1,1,1,2]
[1,2,1,2,1]
[1,2,2,1,1]
2,1,1,1,1,1]
[1,2,1,1,1,1]
[1,1,2,1,1,1]
[1,1,1,1,1,1,1]

b
b2
b
b2
b2
b
b2
b2
1

abc
abc
abc
ac

b2
abc

ab?

ab?
ab?
b2
ab
b2
ab
ab
ab?
a
b2
ab
ab
ab
ab?
ab
b
b2
b2
ab?
ab
ab?
ab?
a



